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Abstract

The two-mode nonlinear response of a suspended cable subjected to the primary resonance is investigated, and the three-

to-one internal resonance is analyzed. Because the treatment of Galerkin discrete models of spatially continuous systems

with initial curvature may lead to erroneous quantitative or even qualitative results, the method of multiple scales is

applied to directly attack the nonlinear partial differential equation and the boundary conditions, which leads to the

modulation equations for the primary resonance of either the first or third symmetric mode. The Newton–Raphson

method and the pseudo-arclength scheme are used to obtain the frequency-response curves and force-response curves, and

the dynamic solutions of the modulation equations are also investigated.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The long-span cable structures are widely used in several engineering fields, such as voltage transmission
lines, cable-supported bridges, mooring cables [1]. Because of their practical significance, various aspects of the
dynamics of cables have already been investigated. Irvine and Caughey [2] developed the linear dynamics of
elastic cables with a small sag, and a general review of the linear vibration of an elastic cable can be found in
Ref. [3]. Using the single-degree-of-freedom (sdof) cable model, many researchers have investigated the finite
free and forced oscillation of elastic cables [4–6], and found many interesting nonlinear phenomena because of
the presence of both quadratic and cubic nonlinearities. Moreover, many interaction phenomena may also
occur due to the internal resonance, and the previous works about the modal interactions in the cable structure
related to the current investigation are presented as follows.

In order to understand the energy exchange in the Hamiltonian case, Benedettini et al. [7] investigated the
modal coupling between in-plane and out-plane motions by using a discrete model. Rao et al. [8] studied the
nonlinear response of a suspended cable under periodic excitation. In their study, the two-to-one internal
resonance between the symmetric in-plane mode and out-of-plane vibration was investigated by using the two-
degree-of-freedom model, and they found that the nonplanar motion of a cable with a given sag may be
activated within a certain region of the external resonance. Perkins [9] examined the effect of one support
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motion on the three-dimensional nonlinear response. Using the Galerkin method, he constructed a two-
degree-of-freedom model to analyze the two-to-one internal resonance, and the method of multiple scales was
applied to the first-order perturbation analysis of the discretized model. Lee and Perkins [10] extended the
study to the second-order perturbation, but their study still focused on the two-to-one internal resonance. By
using a three-degree-of-freedom model, Lee and Perkins [11] found that strong coupling between in-plane and
out-of-plane components occurred under simultaneous one-to-one internal resonance and two-to-one internal
resonance. Pakdemirli et al. [12] investigated the one-to-one internal resonance between the second symmetric
in-plane and out-of-plane modes of a suspended cable, and they found that the frequency-response curves of
the two modes depended on the discretization or the direct method. Benedettini et al. [13] examined the
nonlinear response of the suspended cable by using the method of multiple scales to treat the four-degree-of-
freedom discretized model near the first crossover point.

Using the experimental method, Rega et al. [14] investigated the nonlinear dynamics of a suspended cable
with the cable parameters corresponding to the first crossover point, and they observed strong nonlinear
interaction phenomena among different contributing modes. By directly attacking the integral-partial-
differential equations governing the nonlinear vibrations of suspended cables, Rega et al. [15] showed that the
treatment of the four-degree-of-freedom discretized model might lead to erroneous results. Nayfeh et al. [16]
made another study on the same model by directly attacking the equations of motion by the method of
multiple scales, and they observed complex nonlinear response and a sequence of period-doubling
bifurcations. Zhao et al. [17] examined the coupling dynamics of inclined cables between in-plane and out-
of-plane vibrations under one-to-one internal resonances. Recently, based on the 3-D model formulation,
which is not restricted to cables with very small sag, Srinil et al. [18] investigated the nonlinear characteristics
of the large amplitude free vibrations of inclined sagged cables. And they observed strong coupling
phenomena when the two-to-one internal resonance conditions were activated.

All the above studies only focused on one-to-one or two-to-one internal resonances, and little research was
related to three-to-one internal resonances in suspended cables. In this aspect, we only found that
Lacarbonara et al. [19] presented a detailed picture of activation/orthogonality of bimodal interactions in
suspended cables, and their results showed that three-to-one internal resonances might be activated between
the symmetric modes.

The object of this study is to investigate the nonlinear response of suspended homogeneous elastic cables
with small initial sag-to-span ratios in the case of three-to-one internal resonances, subjected to the vertical
load. This paper is organized as follows. In Section 2, we first present the nondimensional equation of in-plane
motion. Then we consider the relation between the natural frequencies and the elasto-geometric parameter
[20], which shows that there may exist three-to-one internal resonances between the symmetric modes. In
Section 3, the method of multiple scales is applied to the equation of motion and boundary conditions to
obtain the modulation equations for the primary resonance of the first and third symmetric mode. Section 4
presents the equilibrium solutions of the modulation equations for the primary resonances. And the dynamic
solutions of the modulation equations for the primary resonances are investigated in Section 5. A short
summary of the results is presented in Section 6.
2. Problem formulation

Considering a suspended homogenous elastic cable whose two supports are fixed, the suspended cable is
subjected to a distributed harmonic excitation, as shown in Fig. 1. Neglecting the bending, torsional and shear
rigidities, and assuming that the suspended cable stretches in a quasi-static manner [9] due to the fact that the
transverse wave speed is much lower than the longitudinal wave speed, the nondimensional equation
governing the nonlinear in-plane motion of the suspended cable can be expressed by the following partial
differential equation [13,16]:

€wþ 2c _w� w00 � aðw00 þ y00Þ

Z 1

0

y0w0 þ
1

2
w0

2

� �
dx ¼ F ðxÞ cos ðOtÞ. (1)
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Fig. 1. The suspended cable’s configurations.

Fig. 2. Variations of the nondimensional natural frequencies with l=p.
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The boundary conditions are given by

wðx; tÞ ¼ 0; at x ¼ 0 and x ¼ 1. (2)

In Eq. (1), yðxÞ ¼ 4fxð1� xÞ is the initial parabolic shape of the suspended cable; f ¼ b=l is the sag-to-span
ratio; b is the cable sag; l is the span of the cable; a ¼ EA=H ¼ 8bEA=ðmglÞ is the nondimensional stiffness
parameter [19]; m is the mass per unit length; E is the Young modulus; A is the area of the cross section; g is
the gravitational acceleration; c is the nondimensional damping coefficients; w is the in-plane displacement
(nondimensionalized with respect to the span); the overdot indicates the differentiation with respect to the
nondimensional time t; the prime indicates the differentiation with respect to the nondimensional coordinate
x; F ðxÞ describes the spatial distribution of the harmonic load; and O is the nondimensional frequency of the
harmonic load.

The symmetric in-plane eigenmodes are given by

fiðxÞ ¼ ci½1� tan ð1
2
oiÞ sinoix� cosoix�; i ¼ 1; 3; 5; . . . , (3)

where ci are chosen so that the modes satisfy the orthonormality condition. And the eigenfrequencies are
determined by

1

2
oi � tan

oi

2

� �
�

1

2l2
o3

i ¼ 0, (4)
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where l2 ¼ EA=mglð8b=lÞ3. The antisymmetric in-plane eigenmodes and eigenfrequencies are given by

fiðxÞ ¼
ffiffiffi
2
p

sin ipx; oi ¼ ip; i ¼ 2; 4; 6; . . . . (5)

The variations of the eight lowest calculated nondimensional natural frequencies with the elasto-geometric
parameter l are shown in Fig. 2. The obtained natural frequencies are the same as those of Lacarbonara et al.
[19], and we can note that the three-to-one internal resonance between the symmetric in-plane modes is
possible for a certain range of l=p. For example, the three-to-one internal resonance between the third and
first symmetric modes may be activated when l is close to a � 1:51p, and the three-to-one internal resonance
between the fourth and first symmetric modes may be activated when l is close to b � 2:55p or c � 8:91p.
Lacarbonara et al. [19] pointed out the latter two cases. However, the first case seemed to be ignored.
Moreover, the three-to-one internal resonances between the symmetric modes and antisymmetric or
nonplanar modes are not activable because the nonlinear interaction terms equal to zero [19].

Because the discretization would lead to erroneous results for systems with quadratic and cubic
nonlinearities [15,21], we use the method of multiple scales to directly attack the nonlinear equation of motion
and boundary conditions to investigate the three-to-one internal resonance between the third and first
symmetric mode in the following section.
3. Perturbation analysis

Lacarbonara et al. [22] have obtained the general modulation equations related to three-to-one internal
resonances in nonlinear continuous systems with linear, quadratic, and cubic geometric operators by directly
applying the method of multiple scales to the governing equations of motion and boundary conditions.
Similarly, following Lacarbonara et al. [22], we use the method of multiple scales to obtain the modulation
equations governing the nonlinear dynamic of suspended cables in the case of three-to-one internal
resonances. First, we rewrite Eq. (1) as a system of two first-order equations in time as follows:

_w� u ¼ 0, (6)

_uþ 2cu� w00 � aðw00 þ y00Þ

Z 1

0

w0y0 þ
1

2
w0

2

� �
dx ¼ F ðxÞ cos ðOtÞ. (7)

Because the resonant terms appear at the third order [22], we can seek uniform expansions of w and u in the
following form:

uðx; tÞ ¼
X3
i¼1

�iuiðx;T0;T2Þ þ � � � , (8)

wðx; tÞ ¼
X3
i¼1

�iwiðx;T0;T2Þ þ � � � , (9)

where Ti ¼ �it, where � is a small bookkeeping parameter. In order to let the damping, nonlinearity and
resonance balance each other, we rescale c and F as c! �2c and F ! �3F . Substituting Eqs. (8) and (9) into
Eqs. (6) and (7), and equating the coefficients of like powers of �, we can obtain:

Order �:

D0w1 � u1 ¼ 0, (10)

D0u1 � w001 � ay00
Z 1

0

w01y
0 dx ¼ 0, (11)

Order �2:

D0w2 � u2 ¼ 0, (12)
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D0u2 � w002 � ay00
Z 1

0

w02y
0 dx ¼ aw001

Z 1

0

y0w01 dxþ
1

2
ay00

Z 1

0

w01w
0
1 dx, (13)

Order �3:

D0w3 � u3 ¼ �D2w1 �D1w2, (14)

D0u3 � w003 � ay00
Z 1

0

w02y
0 dx ¼ �D2u1 �D1u2 � 2cu1

þ aw001

Z 1

0

y0w02 dxþ aw002

Z 1

0

y0w01 dxþ ay00
Z 1

0

w01w02 dx

þ
1

2
aw001

Z 1

0

w01w
0
1 dxþ F cosOT0, ð15Þ

where Di ¼ q=qTi. The boundary conditions are given by

wi ¼ 0; ui ¼ 0 at x ¼ 0 and x ¼ 1 for i ¼ 1; 2; 3. (16)

Because all the modes that are not directly or indirectly excited die out after a long time due to the damping
effect [23], the solution of the first-order problem is assumed to consist of the first and third symmetric modes;
that is

w1 ¼ A1ðT2Þf1ðxÞe
io1T0 þ A3ðT2Þf3ðxÞe

io3T0 þ cc, (17)

u1 ¼ io1A1ðT2Þf1ðxÞe
io1T0 þ io3A3ðT2Þf3ðxÞe

io3T0 þ cc, (18)

where fiðxÞ and oi are the ith symmetric mode and corresponding frequency, cc stands for the complex
conjugate of the preceding terms, and the complex-valued functions A3ðT2Þ and A1ðT2Þ are determined by
imposing the solvability conditions at the third order. Substituting Eqs. (17) and (18) into Eqs. (12) and (13),
we can obtain

D0w2 � u2 ¼ 0, (19)

D0u2 � w002 � ay00
Z 1

0

w02y
0 dx ¼ A2

1e
2io1T0P1 þ A2

3e
2io3T0P2 þ A1A3e

iðo3þo1ÞT0P3

þ A3Ā1e
iðo3�o1ÞT0P4 þ A1Ā1P5 þ A3Ā3P6 þ cc, ð20Þ

where Pi are defined in Appendix A. Then the solutions of Eqs. (19)–(20) can be written as follows:

w2 ¼ A2
1e

2io1T0C1ðxÞ þ A2
3e

2io3T0C2ðxÞ þ A3A1e
iðo1þo3ÞT0C3ðxÞ

þ A3Ā1e
iðo3�o1ÞT0C4ðxÞ þ A1Ā1C5ðxÞ þ A3Ā3C6ðxÞ þ cc, ð21Þ

u2 ¼ A2
1e

2io1T0c1ðxÞ þ A2
3e

2io3T0c2ðxÞ þ A3A1e
iðo1þo3ÞT0c3ðxÞ

þ A3Ā1e
iðo3�o1ÞT0c4ðxÞ þ A1Ā1c5ðxÞ þ A3Ā3c6ðxÞ þ cc, ð22Þ

where the second-order shape functions CiðxÞ ði ¼ 1; 2; 3; 4; 5; 6Þ are the solutions of the following boundary-
value problem:

C001 þ ay00
Z 1

0

C01y
0 dxþ 4o2

1C1 ¼ �P1, (23)

C002 þ ay00
Z 1

0

C02y
0 dxþ 4o2

3C2 ¼ �P2, (24)

C003 þ ay00
Z 1

0

C03y
0 dxþ ðo3 þ o1Þ

2C3 ¼ �P3, (25)
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C004 þ ay00
Z 1

0

C04y
0 dxþ ðo3 � o1Þ

2C4 ¼ �P4, (26)

C005 þ ay00
Z 1

0

C05y
0 dx ¼ �P5, (27)

C006 þ ay00
Z 1

0

C06y
0 dx ¼ �P6, (28)

with all of the functions satisfying the boundary conditions. On the other hand, the functions associated with
the second-order velocity field are given by

c1ðxÞ ¼ 2io1C1ðxÞ; c2ðxÞ ¼ 2io3C2ðxÞ; c3ðxÞ ¼ iðo3 þ o1ÞC3ðxÞ,

c4ðxÞ ¼ iðo3 � o1ÞC4ðxÞ; c5ðxÞ ¼ 0; c6ðxÞ ¼ 0. (29)

Substituting Eqs. (17), (18), (21), (22) into the third-order Eqs. (14) and (15), we can obtain

D0w3 � u3 ¼ �D2A1e
io1T0f1 �D2A3e

io3T0f3 þ ccþNST, (30)

D0u3 � w003 � ay00
Z 1

0

y0w03 dx ¼ � io1ðD2A1 þ 2cA1Þe
io1T0f1 � io1ðD2A3 þ 2cA3Þe

io3T0f3

þ w1ðxÞA
2
1Ā1e

io1T0 þ w2ðxÞA1A3Ā3e
io1T0 þ w3ðxÞA3Ā1Ā1e

iðo3�2o1ÞT0

þ w4ðxÞA3A1Ā1e
io3T0 þ w5ðxÞA

2
3Ā3e

io3T0 þ w6ðxÞA
3
1e

3io1T0 þ
F

2
eiOT0

þ ccþNST, ð31Þ

where NST stands for the terms that do not produce secular effects, and wiðxÞ are defined in Appendix A.
To describe the nearness of o3 to 3o1 and O to either o1 or o3, we introduce the detuning parameters s1 and

s2 defined as

o3 ¼ 3o1 þ �
2s1 and O ¼ oi þ �

2s2; i ¼ 1; 3. (32)

Because the homogeneous problems governing w3 and u3 admit nontrivial solutions, the corresponding
nonhomogeneous problem has a solution only if the solvability conditions are satisfied. In this case, the right-
hand side of Eqs. (30) and (31) need to be orthogonal to every solution of the adjoint problem. Therefore, we
can obtain the following solvability conditions:

2io1ðA
0
1 þ m1A1Þ ¼ G11A2

1Ā1 þ G12A1A3Ā3 þ G13A3Ā
2
1e

is1T2 þ
f 1

2
di1e

is2T2 , (33)

2io3ðA
0
3 þ m2A3Þ ¼ G21A3A1Ā1 þ G22A2

3Ā3 þ G23A3
1e
�is1T2 þ

f 3

2
di3e

is2T2 , (34)

where Gij, mi, f 1, f 3 are defined in Appendix A, d is the Kronecker delta, and the prime indicates the derivative
with respect to T2. We note that, except for the damping terms, the system is conservative and hence must be
derivable from the Lagrangian [21]:

L ¼ io1ðA1Ā
0
1 � A01Ā1Þ þ io3ðA3Ā03 � A03Ā3Þ þ

1

2
G11A2

1Ā
2
1 þ

1

2
G22A2

3Ā2
3

þ G12A3A1Ā3Ā1 þ
f 1

2
di1Ā1e

is2T2 þ
f 1

2
di1A1e

�is2T2 þ
f 3

2
di3Ā3e

is2T2 þ
f 3

2
di3A3e

�is2T2 . ð35Þ

Consequently,

G12 ¼ G21 and G13 ¼ 3G23. (36)

Next, we consider the primary resonance of the first and third symmetric mode separately.
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3.1. Primary resonance of the first symmetric mode

Introducing the following polar transformation:

Aj ¼
1
2
aje

ibj ; j ¼ 1; 3, (37)

substituting Eq. (37) into Eqs. (33) and (34), and separating the real and imaginary parts, we can obtain the
following polar form of the modulation equations:

a01 ¼ �m1a1 þ
G13

8o1
a2
1a3 sin g1 þ

f 1

2o1
sin g2, (38)

a03 ¼ �m2a3 �
G23

8o3
a3
1 sin g1, (39)

a1b
0
1 ¼ �

G11

8o1
a3
1 �

G12

8o1
a2
3a1 �

G13

8o1
a2
1a3 cos g1 �

f 1

2o1
cos g2, (40)

a3b
0
3 ¼ �

G21

8o3
a2
1a3 �

G22

8o3
a3
3 �

G23

8o3
a3
1 cos g1, (41)

where

g1 ¼ b3 � 3b1 þ s1T2; g2 ¼ s2T2 � b1. (42)

Alternatively, we can express Aj in the following Cartesian form:

A1 ¼
1
2
ðp1 � iq1Þe

is2T2 and A3 ¼
1
2
ðp3 � iq3Þe

ið3s2�s1ÞT2 . (43)

Substituting Eq. (43) into Eqs. (33) and (34), and separating the real and imaginary parts, the following
Cartesian form of the modulation equations can be obtained:

p01 ¼ �m1p1 � s2q1 �
1

8o1
G11q1ðp

2
1 þ q2

1Þ þ G12q1ðp
2
3 þ q2

3Þ
� �

þ
G13

8o1
q3ðq

2
1 � p2

1Þ þ 2p1p3q1

� �
, (44)

q01 ¼ �m1q1 þ s2p1 þ
1

8o1
G11p1ðp

2
1 þ q2

1Þ þ G12p1ðp
2
3 þ q2

3Þ
� �

þ
G13

8o1
p3ðp

2
1 � q2

1Þ þ 2p1q1q3

� �
þ

f 1

2o1
, (45)

p03 ¼ �m2p3 � ð3s2 � s1Þq3 �
1

8o3
G21q3ðp

2
1 þ q2

1Þ þ G22q3ðp
2
3 þ q2

3Þ
� �

�
G23

8o3
q1ð3p2

1 � q2
1Þ

� �
, (46)

q03 ¼ �m2q3 þ ð3s2 � s1Þp3 þ
1

8o3
G21p3ðp

2
1 þ q2

1Þ þ G22p3ðp
2
3 þ q2

3Þ
� �

�
G23

8o3
p1ð3q2

1 � p2
1Þ

� �
. (47)

Thus we can obtain the following second-order expansion of the nonlinear response of the suspended cable for
the case of three-to-one resonance:

wðx; tÞ ¼ a1 cos ðOt� g2Þf1ðxÞ þ a3 cosð3Otþ g1 � 3g2Þf3ðxÞ

þ 1
2

a2
1½cos 2ðOt� 2g2ÞC1ðxÞ þC5ðxÞ� þ a2

3½cos 2ð3Otþ g1 � 3g2ÞC2ðxÞ þC6ðxÞ�
�

þa1a3½cos ð4Otþ g1 � 4g2ÞC3ðxÞ þ cos ð2Otþ g1 � 2g2ÞC4ðxÞ�
�
þ � � � , ð48Þ

where � was set equal to one.

3.2. Primary resonance of the third symmetric mode

In this case, we can obtain the following polar form of the modulation equations:

a01 ¼ �m1a1 þ
G13

8o1
a2
1a3 sin g1, (49)
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a03 ¼ �m2a3 �
G23

8o3
a3
1 sin g1 þ

f 3

2o3
sin g2, (50)

a1b
0
1 ¼ �

G11

8o1
a3
1 �

G12

8o1
a2
3a1 �

G13

8o1
a2
1a3 cos g1, (51)

a3b
0
3 ¼ �

G21

8o3
a2
1a3 �

G22

8o3
a3
3 �

G23

8o3
a3
1 cos g1 �

f 3

2o3
cos g2, (52)

where g1 ¼ b3 � 3b1 þ s1T2 and g2 ¼ s2T2 � b3. Similar, we can obtain the Cartesian form of the modulation
equations:

p01 ¼ �m1p1 �
s1 þ s2

3
q1 �

1

8o1
G11q1ðp

2
1 þ q2

1Þ þ G12q1ðp
2
3 þ q2

3Þ
� �

þ
G13

8o1
q3ðq

2
1 � p2

1Þ þ 2p1p3q1

� �
, (53)

q01 ¼ �m1q1 þ
s1 þ s2

3
p1 þ

1

8o1
G11p1ðp

2
1 þ q2

1Þ þ G12p1ðp
2
3 þ q2

3Þ
� �

þ
G13

8o1
p3ðp

2
1 � q2

1Þ þ 2p1q1q3

� �
, (54)

p03 ¼ �m2p3 � s2q3 �
1

8o3
G21q3ðp

2
1 þ q2

1Þ þ G22q3ðp
2
3 þ q2

3Þ
� �

�
G23

8o3
q1ð3p2

1 � q2
1Þ

� �
, (55)

q03 ¼ �m2q3 þ s2p3 �
1

8o3
G21p3ðp

2
1 þ q2

1Þ þ G22p3ðp
2
3 þ q2

3Þ
� �

�
G23

8o3
p1ð3q2

1 � p2
1Þ

� �
þ

f 3

2o3
. (56)

And the second-order expansion of the nonlinear response of the suspended cable is given by

wðx; tÞ ¼ a1 cos
1
3
ðOt� g1 � g2Þ
� 	

f1ðxÞ þ a3 cos ðOt� g2Þf3ðxÞ

þ 1
2

a2
1 cos 2

3
ðOt� g1 � g2ÞC1ðxÞ þC5ðxÞ

� 	
þ a2

3½cos 2ðOt� g2ÞC2ðxÞ þC6ðxÞ�
�

þa1a3 cosð4
3
Ot� 1

3
g1 �

4
3
g2ÞC3ðxÞ þ cosð2

3
Otþ 1

3
g1 �

2
3
g2ÞC4ðxÞ

� 	�
þ � � � . ð57Þ

4. Equilibrium solutions

This section contains the details of the equilibrium solutions of the modulation equations for the chosen
external and three-to-one internal resonance combination, where the excitation frequency is nearly equal to
the natural frequency of the first and third symmetric mode. The coefficients of the modulation equations for
three values of lð1:57p; 1:51p; 1:43pÞ are shown in Table 1, and the corresponding internal detuning parameter
s1 is �1:5; 0; 0:5. And the six second-order shape functions Ci are shown in Fig. 3, when l ¼ 1:75p. It may be
noted that they are symmetric.

The equilibrium solution of the modulation equations corresponds to the periodic motion of the suspended
cable. To determine the equilibrium solution, we can set a01 ¼ a03 ¼ 0 and g01 ¼ g02 ¼ 0 in the polar form of the
modulation equations or set p01 ¼ q01 ¼ p03 ¼ q03 ¼ 0 in the Cartesian form of the modulation equations. In
either case, the resulting systems of four nonlinear equations can be solved by using the Newton–Raphson
method. We can note that the modulation equations only admit two-mode solution when the first symmetric
mode is directly excited due to the presence of the term G23A3

1e
�is1T2 in Eq. (34). Whereas, the single-mode

solution may occur when the third symmetric mode is directly excited due to the presence of the Ā in the third
term of the right-hand side of Eq. (33).
Table 1

The nonlinear coefficients for different values of l=p

l=p s1 G11 G12 G13 G21 G22 G23

1.75 �1.5 9:894� 104 1:617� 106 �9:621� 104 1:617� 106 �1:037� 107 �3:207� 104

1.51 0 6:507� 104 1:306� 106 �3:816� 104 1:306� 106 �1:019� 107 �1:272� 104

1.43 0.5 5:579� 104 1:196� 106 �2:882� 104 1:196� 106 �1:012� 107 �0:960� 104
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Fig. 3. The functions Ci for the three-to-one internal resonance between the third and first symmetric mode when l ¼ 1:75p.

Fig. 4. Frequency-response curves for the primary resonance of the first symmetric mode: m1 ¼ 0:05, m2 ¼ 0:01, f 1 ¼ 0:16 and s1 ¼ �1:5.
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After the equilibrium solution is determined, the stability of the equilibrium solution can then be assessed by
applying the classical method of linearization [24]. Then, the pseudo-arclength path following algorithm [24]
can be used to trace the solution branch. In the following frequency- or force-response curves, the stable and
unstable solutions are indicated, respectively, by solid and dashed line.

4.1. Primary resonance of the first symmetric mode

Fig. 4 illustrates the amplitudes of the first and third symmetric mode as the functions of the detuning
parameter s2 in the neighborhood of the primary resonance of the first symmetric mode with m1 ¼ 0:05,
m2 ¼ 0:01, f 1 ¼ 0:16, and s1 ¼ �1:5, and SN represents the saddle-node point. The results shown in Fig. 4
exhibit a softening behavior for the frequency-response curves of the first symmetric mode, in which the
quadratic nonlinearity due to the initial shape dominates the nonlinear response. This is mainly due to the fact
that the coefficient G11 is positive. Fig. 4 also shows that the modulation equations have two stable solutions and
one unstable solution when s2o0:157. And the initial conditions determine which stable solution the suspended
cable’s response settles. Whereas, the unstable solution does not exist in the suspended cable’s response.



ARTICLE IN PRESS

Fig. 5. Frequency-response curves for the primary resonance of the first symmetric mode: m1 ¼ 0:05, m2 ¼ 0:01, f 1 ¼ 0:16 and s1 ¼ 0:5.
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As the detuning parameter s2 increases from a very small value, the lower stable solution of the first
symmetric mode grows first, then decreases until a saddle-node bifurcation occurs at SN, where one of the
corresponding eigenvalues crosses the imaginary axis along the real axis from the left-half-plane to the right-
half-plane. Instead, one stable solution of the third symmetric mode grows rapidly all the way. Moreover, the
other stable solutions of the first and third symmetric mode decrease as s2 increases. We can also note that the
amplitude of the third symmetric mode tends to zero for the large value of s2, which means that the third
symmetric mode seems to be very difficult to be activated.

The effects of the elasto-geometric parameter l on the frequency-response curves are investigated. In this
case, l is reduced to 1:43p, and the detuning parameter s1 becomes 0:5. The frequency–force curves for the
primary resonance of the first symmetric mode with m1 ¼ 0:05, m2 ¼ 0:01, f 1 ¼ 0:16 and s1 ¼ 0:5 are shown in
Fig. 5. Compared with Fig. 4, we can note that the amplitude of the third symmetric mode decreases but the
amplitude of the first symmetric mode increases as s1 increases or l decreases. Referring to Table 1, we can
also note that the absolute value of the nonlinear interaction coefficients decreases as the elasto-geometric
parameter l decreases. Therefore, we can conclude that the strength of the modal interaction due to three-to-
one internal resonances decreases as l decreases. Moreover, another significant difference of the frequency-
response curves is the disappearance of the mutation of the first symmetric mode’s amplitude.

The force-response curves for m1 ¼ 0:05, m2 ¼ 0:01, s1 ¼ �1:5 and s2 ¼ �1:75 are shown in Fig. 6, where
HB represents the Hopf bifurcation point. The force-response curves exhibit a relatively small multi-valued
range due to the saddle-node bifurcations at SN1 and SN2. As f 1 increases from 0.092, one stable solution
loses its stability via the Hopf bifurcation at HB1, where one pair of complex conjugate eigenvalues crosses the
imaginary axis transversely from the left- to the right-half-plane. Following, the unstable solution regains its
stability via the reverse Hopf bifurcation, indicated by HB2 in Fig. 6.

4.2. Primary resonance of the third symmetric mode

In this case, there are two possibilities: first a1 ¼ 0, a3a0; second a1a0, a3a0. For the first case, a3 and g2
are determined by

m2a3 ¼
f 3

2o3
sin g2, (58)
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Fig. 6. Force-response curves for the primary resonance of the first symmetric mode: m1 ¼ 0:05, m2 ¼ 0:01, s1 ¼ �1:5 and s2 ¼ �1:75.
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s2a3 ¼ �
G22

8o3
a3
3 �

f 3

2o3
cos g2. (59)

Hence, the frequency-response equation is given by

s2 ¼ �
G22

8o3
a2
3 �

f 2
3

4o2
3a

2
3

� m22


 �1=2

, (60)

or we can obtain a3 through the relation a3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ q2

3

q
by using the following equations:

m2p3 ¼ �s2q3 �
1

8o3
G22q3ðp

2
3 þ q2

3Þ
� �

, (61)

m2q3 ¼ s2p3 �
1

8o3
G22p3ðp

2
3 þ q2

3Þ
� �

þ
f 3

2o3
. (62)

In general, the single-mode response can be determined by Eqs. (58) and (59) or Eqs. (61) and (62). However,
the stability of the single-mode solution must be ascertained by the corresponding eigenvalues of the Jacobian
matrix of Eqs. (53)–(56). For the second case, we can determine the equilibrium solutions and their stability by
using the usual procedure.

Fig. 7 shows the frequency-response curves for the primary resonance of the third symmetric mode when
m1 ¼ 0:05, m2 ¼ 0:01, s1 ¼ �1:5 and f 3 ¼ 0:50. The single-mode response exhibits a hardening behavior,
which is due to the fact that the effective nonlinearity coefficient [20] G22 is negative (see Table 1). It should be
pointed out that, when lo3:5p (excepting very small value of l), the effective nonlinearity coefficient is positive
for the first symmetric mode [20], and is negative for the higher symmetric mode [25] (e.g. the third symmetric
mode). Furthermore, a saddle-node bifurcation of the single-mode solution occurs at s2 ¼ 4:721.

When s2 is very small, Fig. 7 shows that there are four branches of the two-mode solutions, which end at the
two saddle-node bifurcations (SN1, SN2). All the two-mode solution branches are isolated from the single-
mode solution, although the saddle-node bifurcation point SN2 is very close to the single-mode solution
branch. Similar to this case, the isolated two-mode solution branches were also found in the hinged-clamped
beam with the three-to-one internal resonance excited by primary resonance of higher mode [26]. Moreover, as
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Fig. 7. Frequency-response curves for the primary resonance of the third symmetric mode: m1 ¼ 0:05, m2 ¼ 0:01, s1 ¼ �1:5 and

f 3 ¼ 0:50.

Fig. 8. Frequency-response curves for the primary resonance of the third symmetric mode: m1 ¼ 0:05, m2 ¼ 0:01, s1 ¼ 0:5 and f 3 ¼ 0:50.
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s2 decreases from �1.43, the stable two-mode solutions are found to undergo a supercritical Hopf bifurcation
at HB, giving rise to periodic solution with period 2p=jbj, where b is the purely imaginary eigenvalue.

Next, the effects of the detuning parameter s1 or the elasto-geometric parameter l on the frequency-
response curves for the primary resonance of the third symmetric mode are shown in Fig. 8 when m1 ¼ 0:05,
m2 ¼ 0:01, f 3 ¼ 0:50 and s1 ¼ 0:5. Figs. 7 and 8 show that the amplitude of the directly excited high-frequency
mode decreases and the amplitude of the indirectly excited low-frequency mode increases when s1 increases.
Fig. 8 also shows that there exist two-mode equilibrium solution branches when s2o� 7:25 in the present
case.
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5. Dynamic solutions

According to the Hopf bifurcation theorem [24,27], a small limit cycle is born in the phase-plane as a
result of the Hopf bifurcation. The limit cycle is stable if the bifurcation is supercritical, and unstable
if the bifurcation is subcritical. In this section, the periodic solution and chaotic solution of the modula-
tion equations are investigated. Because the Cartesian form of the modulation equations has the standard
form as

_x ¼ FðxÞ, (63)

it is used to examine the dynamic solution by applying the shooting method [24]. And the stability of the
periodic solution is determined by using the Floquet theory [24]. Then the pseudo-arclength path following
algorithm can be used to trace the periodic solution branch. In the following figures, the open circles denote
the unstable periodic solutions, and the filled circles denote the stable periodic solutions.

5.1. Primary resonance of the first symmetric mode

On continuing the periodic solutions emerging from HB1 and HB2 in Fig. 6, Fig. 9 shows the periodic
solutions of the modulation equations as the functions of f 1 with m1 ¼ 0:05, m2 ¼ 0:01, s1 ¼ �1:5 and
s2 ¼ �1:75, and TR represents the torus bifurcation point. It is observed from Fig. 9 that the two Hopf
bifurcations (HB1 and HB2) are subcritical, due to the fact that the periodic solution are unstable. Following
branch I, the periodic solution undergoes a secondary Hopf bifurcation (Neimark–Sacker bifurcation) at
f 1 ¼ 0:0325, leading to a unstable torus. To illustrate the torus, Fig. 10 shows the time history of one
representative torus with f 1 ¼ 0:032. Note that the unstable periodic orbit, with period T � 6, composes the
main part of the motion, and the small amplitude wiggles are caused by the second frequency. As f 1 decreases,
we can obtain a sequence of torus bifurcations.

Because the Hopf bifurcation is subcritical, the post-bifurcation behavior of the modulation equations
cannot be determined by local analysis. Moreover, the torus bifurcation is far from the Hopf bifurcation
Fig. 9. The periodic solutions and the time-period of the P-1 solution for the primary resonance of the first symmetric mode: m1 ¼ 0:05,
m2 ¼ 0:01, s1 ¼ �1:5 and s2 ¼ �1:75.
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Fig. 10. The time history of a torus at f 1 ¼ 0:032: m1 ¼ 0:05, m2 ¼ 0:01, s1 ¼ �1:5 and s2 ¼ �1:75.

Fig. 11. The time history of the modulation equations at f 1 ¼ 0:0175: m1 ¼ 0:05, m2 ¼ 0:01, s1 ¼ �1:5 and s2 ¼ �1:75.
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point, which occurs on the nontrivial states. Therefore, we do not expect any interactions between these two
bifurcations. To better understand the motion of the torus, the modulation equations are numerically
integrated by using the four-order Runge–Kutta numerical algorithm, whose initial conditions are set to the
ones obtained by the modulation equations. Fig. 11 shows the long time history of the modulation
equations. We can note that this sequence of torus bifurcations cannot lead to chaos, whereas, the unstable
torus jumps to the stable equilibrium solution, which is mainly due to the fact that these periodic solutions are
all unstable.

Moreover, the time-period ðTÞ of the periodic solution starting from HB1 as the function of the parameter
f 1 is also included in Fig. 9. We can also note that the period increases rapidly when f 1 decreases.
Furthermore, another unstable periodic solution branch (Branch II) starting from HB2 terminates
immediately at f 1 ¼ 0:468.

Next, the effects of the damping parameter m2 on the periodic solution are investigated. Fig. 12 shows the
periodic solution and its time-period ðTÞ as the functions of f 1 with m1 ¼ 0:05, m2 ¼ 0:05, s1 ¼ �1:5 and
s2 ¼ �1:75. Starting from the subcritical Hopf bifurcation, the unstable periodic solution continues
along the equilibrium solution and terminates at the saddle S which lies on the unstable equilibrium solu-
tion branch. And we can also note that the period T of the unstable periodic solution increases rapidly and
tends to 1, which indicates that the periodic orbit is close to the homoclinic orbit [27]. Choosing the
parameter f 1 ¼ 0:0152 with the maximum period T, we obtain an approximate homoclinic orbit as shown
in Fig. 13.

5.2. Primary resonance of the third symmetric mode

Choosing the HB point in Fig. 7 as the initial point, we obtain the periodic solution branch for m1 ¼ 0:05,
m2 ¼ 0:01, s1 ¼ �1:5 and f 3 ¼ 0:50, as shown in Fig. 14, where PD represents the period-doubling bifurcation
point. The period-1 solution (P-1) is stable over the detuning interval s2 2 ð�4:41;�3:45Þ, and loses its
stability via the period-doubling bifurcation, indicated by PD in Fig. 14. On continuing the period-2 solution
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Fig. 13. Approximate homoclinic orbit at f 1 ¼ 0:0152: m1 ¼ 0:05, m2 ¼ 0:05, s1 ¼ �1:5 and s2 ¼ �1:75.

Fig. 12. The periodic solutions and the time-period of the period-1 solution for the primary resonance of the first symmetric mode:

m1 ¼ 0:05, m2 ¼ 0:05, s1 ¼ �1:5 and s2 ¼ �1:75.
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(P-2) branch emerging from PD, we can obtain a cascade of period-doubling bifurcations, which eventually
leads to chaos. The time-period ðTÞ of the periodic solution as the function of the detuning parameter s2 is
also included in Fig. 14, which shows that the variation of period is very small.
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Fig. 14. The periodic solutions and the time-period of the P-1 solution for the primary resonance of the third symmetric mode: m1 ¼ 0:05,
m2 ¼ 0:01, s1 ¼ �1:5 and f 3 ¼ 0:50.

(d)

(a)

(e) (f)

(b) (c)

Fig. 15. Two-dimensional projections of phase portraits onto ðp1 � q3Þ phase space for m1 ¼ 0:05, m2 ¼ 0:01, s1 ¼ �1:5 and f 3 ¼ 0:50: (a)
s2 ¼ �4:4(P-1); (b) s2 ¼ �4:54(P-2); (c) s2 ¼ �4:542(P-4); (d) s2 ¼ �4:543(P-8); (e) s2 ¼ �4:545(P-16); (f) s2 ¼ �4:547 (chaos).
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(a)

(b)

(c)

(d)

Fig. 16. The time history of the modulation equations at s2 ¼ �4:549 after a crisis occurs.
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Then, it is numerically demonstrated that the modulation equations exhibit a cascade of period-doubling
bifurcations leading to chaos. Fig. 15 shows two-dimensional projections of the phase portraits onto the
p1 � q3 plane as the detuning parameter s2 slowly varies. When s2 increases past the Hopf bifurcation point
(HB1), a small limit cycle is born, as shown in Fig. 15a. As s2 decreases, the limit cycle undergoes a cascade of
period-doubling bifurcations at s2 ¼ �4:54(P-2), s2 ¼ �4:542(P-4), s2 ¼ �4:543(P-8), s2 ¼ �4:545(P-16). It
may be noted that this cascade of period-doubling values converges quickly to a value around s2 ¼ �4:546. At
last the cascade of period-doubling bifurcations leads to chaos. Fig. 15f shows one representative chaotic
attractor for s2 ¼ �4:547. As s2 decreases further, the chaotic attractor encounters a boundary crisis. Fig. 16
shows the time history of the modulation equations after the boundary crisis occurs. Referring to Fig. 16, we
can note that the chaotic attractor only lasts a finite long chaotic transients time, then settles down to the stable
single-mode equilibrium solution. Here, it is worth mentioning that the investigation of Chin and Nayfeh [26]
on the dynamic solution of the hinged-clamped beams with three-to-one internal resonances is similar to the
present case. They also numerically demonstrated that the P-1 solution undergoes a sequence of period-
doubling bifurcations leading to chaos.

In Fig. 17, we show the variation of the dynamic configurations over one period of vibration when
l ¼ 1:57p, where the dashed line denotes the initial deflection, and the solid line denotes the current dynamic
configuration. We can note that the shapes of functions CiðxÞ (see Fig. 3) play a dominant role on the spatial
configurations of the suspended cable.

6. Conclusion

The two-mode response of the suspended cable subjected to the primary resonance is examined. As
examples, the primary resonance of the first symmetric mode and the primary resonance of the third
symmetric mode are investigated. The method of multiple scales is used to directly attack the equation of
motion and the boundary conditions, which leads to four first-order nonlinear ordinary-differential equations
describing the modulation of the amplitude and phases of the interaction modes.

Then the Newton–Raphson method is used to determine the equilibrium solution, whose stability is
determined by examining the eigenvalues of the corresponding Jacobian matrix.

Also the dynamic solution of the modulation equations is obtained by the shooting method. And the
Folquet theory is applied to determine the stability of the dynamic solution. Some complex nonlinear
dynamics phenomena, including torus bifurcation, period-doubling bifurcations, boundary crisis, and chaos,
are investigated.
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Fig. 17. In-plane displacement field for the two-mode solution: the first column—the primary resonance of the first symmetric mode with

s2 ¼ �5:5, the second column—the primary resonance of the third symmetric mode s2 ¼ �3:0, other parameters see Figs. 4 and 7. The

dashed line denotes the initial deflection, and the solid line denotes the current dynamic configuration.
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Appendix A
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0
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3ðxÞdx, (76)
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w1ðxÞf1ðxÞdx; G12 ¼

Z 1

0

w2ðxÞf1ðxÞdx; G13 ¼
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